Categories
Artificial Intelligence

“Hey Siri, Define Artificial Intelligence and Machine Learning”

Although one would assume these two highly used key terms would be well known and well defined in their respective industries/departments, they are surprisingly not. Artificial intelligence and machine learning, although similar, are quite different in many aspects, and a clear definition of each seems to be… necessary.

What is Artificial Intelligence?

The official definition of Artificial Intelligence (AI) reads, the theory and development of computer systems able to perform tasks that normally require human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages.

In simpler terms, Artificial Intelligence seeks to imitate human intelligence. Using a process called statistical learning, Artificial Intelligence is able to receive and process information. There are numerous types of artificial intelligence that include Narrow AI and Strong AI. Narrow AI is a specific type of AI that is used to perform a narrow task. They are also known as Weak AI. Programmed to perform a single task, they lack the self-awareness and  consciousness to perform Intelligent tasks. Strong Artificial Intelligence are typically types of AI that can impersonate actual human intelligence. They can think and perform tasks on their own just like a human being. Strong AI is also known as Artificial General intelligence. Strong AI are distinctive in that they are self-aware and conscious to make decisions.

What is Machine Learning?

Machine Learning (ML) is the process of a computer reprogramming itself to perform more accurately and effectively based on statistical values that it picks up on. For example, if you wanted a computer that could tell the difference between dogs and cats, you could show it a few pictures of each and tell it whether the picture is a dog or a cat. The computer would pick up on details and differences that it notices, and the more pictures it sees, the more it will learn, and the better it will be at identifying the picture. Currently Machine Learning is being used for a wide variety of things in our everyday lives. Machine Learning is responsible for predictive texts on your phone, recommendations on music and movie streaming services, facial recognition, and spam filters on your email to name a few. Machine Learning is important because it makes it possible to quickly and automatically produce models that can analyze larger, more complex data and deliver faster and more accurate results even on a giant scale. Also, by building precise models, any organization has a better chance of identifying profitable opportunities and avoiding unknown risks.

How is Artificial Intelligence Being Used Today?

Artificial Intelligence is a growing technology that has found itself being used in many industries for many different purposes. Some popular examples of Artificial Intelligence are Apple’s Siri, Amazon Alexa, Google’s Assistant, Netflix’ recommendation algorithm, and Nest thermostats along with other companies incorporating AI in their products. AI is also being used in self-driving cars, like Tesla and Mercedes-Benz in addition to the automotive industry in its entirety whether that be in vehicles brake/crash avoidance detection.

Artificial Intelligence is being used in many ways in the workplace, often in ways that people don’t even realize. AI is also commonly used in customer support, security systems, and to automate many tasks that people take for granted.

What is the Future of Artificial Intelligence?

The future of Artificial Intelligence is extremely broad and could present many new and creative outlets to provide humans with a better quality of life and enabling humans to be able to multitask in ways we’ve never done before. This could include, but is not limited to, fully robotically-controlled assembly lines, Autonomous household appliances that could make meals and wash dishes without a user ever interfering with said AI. Other outlets of Artificial Intelligence could be automating hospitals and other first responder services like police or firefighters. Artificial Intelligence could reduce the risk of first responders getting injured and could potentially increase the ability for early detection on threats or natural disasters.

Categories
Artificial Intelligence Data Analytics Insurance

How to Accelerate AI in Insurance Data Analytics

Mastering techniques around Insurance data analytics, knowing what data to get, and how to analyze it, greatly streamlines many of the most expensive insurance business processes.

“The United States is the world’s largest single-country insurance market. It writes more than $1 trillion in net insurance premiums every year. In emerging markets, China continues to be the growth engine.

All together, the global insurance market writes over $5 trillion in net insurance premiums per year.”  

Insurance Journal

Despite its size and global reach, the insurance business model has always been about two things.

  1. Maximizing the premiums received
  2. Minimizing the risk of your portfolio

Beneath these two top goals are a myriad of activities every insurance company has to master, including:

  • Reducing risk
  • Reducing fraud
  • Keeping customers happy with great service
  • Finding new customers with favorable risk profiles

Insurance fraud alone costs the insurance industry more than $80 billion per year. In an effort to overcome fraud, waste, and abuse, many companies are turning to insurance data analytics.

The staggering level of criminality costs us all, adding $400 to $700 a year to premiums we pay for our homes, cars, and healthcare, the feds say. There are simply not enough investigators to put a significant dent in the criminality, so the industry is turning to the machines.

Reducing Risk & Improving Customer Service

The insurance industry definitely has plenty of data. A single claim could have dozens of demographic or firmographic data points to analyze and interpret. A single policy could have dozens of individual attributes depending on what is being insured. Data enrichment, which has become more and more popular, can increase these data points into the thousands.

 

However, as insurance companies succeed and grow, datasets become increasingly large and complex. Often these are locked inside massive policy and claims management systems which do a great job of storing and maintaining the data. These do a great job for looking up individual policy records and claims, and of course, handle billing and renewals quite well.

When multiplied across an organization’s entire book of business, data sets become so large that legacy, on-premises systems are unable to keep pace with data volume, variety and velocity.

But what else could insurance companies be doing with All. That. Data?

We know when data is looked at in aggregate, surprising and valuable insights begin to show themselves.

By contrast, cloud data warehouses working in concert with Data Analytics Software make it possible to ingest, integrate, and analyze limitless amounts of data, freeing up resources to automate these important business processes:

Mastering these techniques around insurance data analytics, knowing what data to get, and how to analyze it, greatly streamlines many of the most expensive insurance business processes.

Customer Quoting, Risk and Pricing Analysis: Life insurance companies harness analytics to provide customers an expedited application and quoting workflow.

Writing Life insurance used to require multi-step risk scoring and an in-person health screening for the customer with a physician. Now it’s done almost instantaneously through the secure analysis of an applicant’s digital health records.

Fraud Detection: Property insurers use data analytics to detect and mitigate fraudulent claims. Predict fraud events from available data before it happens with a predictive analytics platform. Using Machine learning powered historical fraudulent claim data to model your risk in real-time. Look for highly predictive factors that correlate to. In this scenario, past performance is indicative of future results.

Detecting High-Risk claimants: Other algorithms can proactively monitor your portfolio and identify high risk claimants on a recurring basis, over time. After all, most claimant risk is only assessed once – when the policy is first written. However we know, financial circumstances change, properties age, vehicles require repair. Pulling together all obtainable data – policyholder financial and employment status, vehicle repair log, etc. tells companies what’s happening right now and what is likely to will happen next. This reduces manual effort and increases the effectiveness of fraud detection processes.

In about one third of cases, claims can be approved and paid out essentially instantly on approval by the company’s algorithms, he says. Even if a human is involved, it’s radically quicker. It becomes just a quick check to confirm the algorithm’s recommendation, instead of a deep analysis.

Source: Fast Company 

Provider Abuse Prevention:  Medicare and Medicaid make up approximately 37 percent of all healthcare spending in the United States. (according to the Centers for Medicare & Medicaid Services.) This adds up to over $1 trillion of government-subsidized hospital, physician and clinical care, drugs, and lab tests.

At these levels, the potential for waste and sometimes abusive billing by providers and health systems is always present. Program administrators and companies contracted by Medicare and Medicaid increasingly rely on insurance data analytics to combat this. This lets them identify patterns and outliers to thwart unethical billing.

Real-time Lead Scoring: New customers are the lifeblood of insurance growth. And never before have consumers and business customers had so many options and choices for insurance.

Predictive lead scoring sifts through inbound channels and optimizes leads by value and priority. Insurance Lead Scoring tools help select the best prospects with the most favorable risk profiles. Predictive lead scoring also tells insurers and brokers the best ways and times to contact prospects.

Behavioral analysis can predict whether a prospect is just shopping around or truly ready to buy. It also identifies the best method of contact for those prospects based on demographic profiling. Some prospects will appreciate a prompt phone call. Some prefer to come to a branch office. A fast growing group prefers typing over talking and responds better to a digital exchange (text messages, web and mobile apps.) Meeting the needs of these diverse audiences is the key to acquiring the best new prospects. This type of advanced profiling lets insurers predict the best methods and timing for prospect communications, and increases close and policy writing rates.

 

How Big Data Analytics Software in a Cloud Data Warehouse Accelerates Insurance Analytics

Unlike on-premises systems that don’t easily scale, a complete analytics platform featuring a cloud data warehouse, such as Inzata data analytics software, enables organizations to keep pace with the growing demand for insurance data by delivering:

Rapid time-to-value: Realize the power of real-time analytics to supercharge your business agility and responsiveness. Answer complex questions in seconds; ingest and enrich diverse data sources at cloud-speed. Turn virtually any raw, unrefined data into actionable information and beautiful data visualization faster than ever before, all on a single platform.

Rapid ingest of new data sources with AI:

  • Got a hot new leads file?
  • Just found out a new way to tell which vehicles will have the lowest claims this year?

Instantly add and integrate new sources to your dataset with Inzata’s powerful AI data integration. Integrating new data sources and synthesizing new columns and values on the fly can enhance an organization’s decision-making but doing so also increases the company’s data storage requirements.

The Power of Real-Time Performance: Your insights and queries are more most valuable if they get to you in time. In a competitive market where leads convert or abandon in seconds, having the speediest insights makes a huge difference. Inzata’s real-time capabilities and support for connecting to streaming data sources for analysis means you always have the most up-to-the minute information.

Make data even more valuable with Data Enrichment (One-Click-EnrichmentsTM):  Enrich and improve the value and accuracy of your data with dozens of free data enrichment datasets – all within a single, secure platform.

Inzata offers more than 40 enrichments include: Geo-spatial, Advanced Consumer and Place Demographics, Political Data overlays, Weather data, and Healthcare Diagnosis Codes. Plus more than 200 API connectors to bring in data from web and cloud sources.

Security and Compliance: Cloud data warehouses can provide greater security and compliance than on-premises systems. Inzata is available with HIPAA compliance and PCI DSS certification and maintains security compliance and attestations including SOC 2, Type 1 and 2.

Real-time Data Sharing:Secure and governed, account-to-account data sharing in real time reduces unnecessary data exports while delivering data for analysis and risk scoring.

Harness the Power of Insurance Data Analytics

As insurance evolves into an even more data-driven industry, business processes that used to take hours and days are going to be compressed down to seconds. Companies who properly anticipate these changes will reap the benefits in the form of more customers, higher profits and greater market share.

Inzata is an ideal platform for insurers to take the step toward real-time, AI powere analytics that will shape the industry for decades to come.

Polk County Schools Case Study in Data Analytics

We’ll send it to your inbox immediately!

Polk County Case Study for Data Analytics Inzata Platform in School Districts

Get Your Guide

We’ll send it to your inbox immediately!

Guide to Cleaning Data with Excel & Google Sheets Book Cover by Inzata COO Christopher Rafter